Let’s all concentrate on T28, T29, T30 this week.

As soon as these are resolved, I want to concentrate on the following:

Definition 1 The statement that \(q_1, q_2, q_3, \ldots \) is a subsequence of \(p_1, p_2, p_3, \ldots \) means that there is an increasing sequence of natural numbers, \(n_1, n_2, n_3, \ldots \) such that for each natural number \(i \), we have \(p_{n_i} = q_i \).

Example: Suppose \(p_1, p_2, p_3, \ldots \) is a sequence and \(n \) is a function with domain the natural numbers so that \(n_1 = 2, n_2 = 4, n_3 = 6, \ldots \) so that \(n(k) = 2k \) for \(k = 1, 2, 3, \ldots \). Then the sequence \(q_1 = p_2, q_2 = p_4, q_3 = p_6, \ldots \) is a subsequence of \(p_1, p_2, p_3, \ldots \). We will use the notation \((p_n) \) for the sequence \(p_1, p_2, p_3, \ldots \) and \((p_{n_k}) \) for the subsequence of \(p \) defined by the sequence \(n_1, n_2, n_3, \ldots \). Notice that for any sequence \(n \) defining a subsequence, \(n_k \geq k \) because \(n \) is an increasing sequence.

Problem 1 Subsequence 0 Prove that the subsequence in the above example converges.

Problem 2 Subsequence 1 (Kimberly’s Question) If \(q_1, q_2, q_3, \ldots \) is a subsequence of \(p_1, p_2, p_3, \ldots \) and \(p_1, p_2, p_3, \ldots \) converges to some number \(x \), then must \(q_1, q_2, q_3, \ldots \) converge to \(x \)?

Now that Kimberly’s Question is resolved, we have the theorem:

Theorem 1 If \(q_1, q_2, q_3, \ldots \) is a subsequence of \(p_1, p_2, p_3, \ldots \) and \(p_1, p_2, p_3, \ldots \) converges to some number \(x \), then \(q_1, q_2, q_3, \ldots \) also converges to \(x \).

Problem 3 Subsequence 2 Suppose that \(q_1, q_2, q_3, \ldots \) is a subsequence of \(p_1, p_2, p_3, \ldots \) and there is a number \(x \) so that \(q_1, q_2, q_3, \ldots \) converges to \(x \). Is it true that \(p_1, p_2, p_3, \ldots \) converges to \(x \)?

Problem 4 Subsequence 3 Suppose that \((p_n)_{n=1}^{\infty} \) is a sequence of points in the closed interval \([a, b]\). Is it true that every subsequence of \((p_n)_{n=1}^{\infty} \) converges to some point in \([a, b]\)?

Once these are resolved, T31, T32, T33