Name: ____________________________

- Every numbered problem is worth 4 points.
- Do each problem on a separate piece of paper.
- Do NOT use other theorems or problems in your proofs.
- You may use the ‘usual’ properties of the numbers, the definitions, and the completeness axiom.
- Do all of problems 1 - 3; do one of problems 4 and 5.

1. Language
 (a) Complete: The number \(p \) is the first point to the right of the set \(M \) means...
 (b) Complete: The line \(L \) is tangent to the function \(f \) at \((x, f(x))\) means...
 (c) Negate: Every analysis class is fun and hard.
 (d) Negate: The function \(f \) is continuous at \((x, y)\) if \(x \in D_f \) and if \(S \) is an open interval containing \(f(x) \) then there is an open interval \(T \) containing \(x \) so that for all \(t \in T \cap D_f \) we have \(f(t) \in S \).

2. True or false: (Prove or give a counter example.)
 (a) If \(M \) is a point set and \(p \) is a limit point of \(M \) and \(q \) is a limit point of \(M \) then \(p = q \).
 (b) If \(M \) and \(N \) are sets with \(M \subset N \) and \(p \) is a limit point of \(M \) then \(p \) is a limit point of \(N \).
 (c) If \(p_1, p_2, p_3, \ldots \) is a decreasing sequence with range a subset of the positive numbers, then \(p_1, p_2, p_3, \ldots \) converges to some point, \(p \).
 (d) If \(M \) is a set and \(p > m \) for all \(m \in M \) then \(p \) is the first point to the right of \(M \).

3. Continuity: Prove or give a counter example to the statement: If \(f \) is a continuous function on \(M \) and \(x \in M \) is a limit point of \(M \) then \(f(x) \) is a limit point of the range of \(f \).

4. Differentiability: Let \(f \) be the function such that \(f(x) = 3x^2 - 1 \) for every \(x \in \mathbb{R} \) and use your definition above to prove that the derivative of \(f \) at the point \((2, 11)\) is 12.

5. Nested Intervals: Let \(I_n = [-1 - 1/n, 1 + 1/n] \) for every positive integer, \(n \). Prove that \(\{ x : x \in I_k \text{ for all } k = 1, 2, 3, \ldots \} = [-1, 1] \).